Ads
related to: rational numbers practice problemskutasoftware.com has been visited by 10K+ users in the past month
education.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
The Rhind papyrus was written by Ahmes and dates from the Second Intermediate Period; it includes a table of Egyptian fraction expansions for rational numbers , as well as 84 word problems. Solutions to each problem were written out in scribal shorthand, with the final answers of all 84 problems being expressed in Egyptian fraction notation.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p / q is a "good" approximation of a real number α if the absolute value of the difference between p / q and α may not decrease if p / q is replaced by another rational number with a smaller denominator.
Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers. [93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers.
Triangle with the area 6, a congruent number. In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. [1] [2] A more general definition includes all positive rational numbers with this property. [3] The sequence of (integer) congruent numbers starts with
In his Essai sur la théorie des nombres (1798), Adrien-Marie Legendre derives a necessary and sufficient condition for a rational number to be a convergent of the simple continued fraction of a given real number. [4] A consequence of this criterion, often called Legendre's theorem within the study of continued fractions, is as follows: [5 ...
Ads
related to: rational numbers practice problemskutasoftware.com has been visited by 10K+ users in the past month
education.com has been visited by 100K+ users in the past month