Search results
Results from the WOW.Com Content Network
In linear uniform media, a general solution to the wave equation can be expressed as a superposition of sinusoidal plane waves. This approach is known as the angular spectrum method. The form of the planewave solution is actually a general consequence of translational symmetry.
Sinusoidal plane-wave solutions are particular solutions to the wave equation. The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations .
The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
Still, it can be analyzed as a linear combination of simple solutions that are sinusoidal plane waves with various directions of propagation and wavelengths but all with the same propagation speed c. This analysis is possible because the wave equation is linear and homogeneous, so that any multiple of a solution is also a solution, and the sum ...
Of these, the most important examples are the electromagnetic plane waves, in which the radiation has planar wavefronts moving in a specific direction at the speed of light. Of these, the most basic is the monochromatic plane waves, in which only one frequency component is present. This is precisely the phenomenon that this solution model, but ...
Therefore, u and v, or Re(A) and Im(A), are sinusoidal functions of space and time. These exact solutions for the periodic travelling wave families enable a great deal of further analytical study. Exact conditions for the stability of the periodic travelling waves can be found, [ 1 ] [ 2 ] and the condition for absolute stability can be reduced ...
In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: = = (+) (^ ^), where i is the imaginary unit , k is a wave vector of length k ,