Search results
Results from the WOW.Com Content Network
Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels .
Carbon dioxide is produced continuously as the body's cells respire, and this CO 2 will accumulate rapidly if the lungs do not adequately expel it through alveolar ventilation. Alveolar hypoventilation thus leads to an increased PaCO 2 (a condition called hypercapnia). The increase in PaCO 2 in turn decreases the HCO − 3 /PaCO 2 ratio and ...
Tidal volume increases by 30–40%, from 0.5 to 0.7 litres, [9] and minute ventilation by 30–40% [9] [10] giving an increase in pulmonary ventilation. This is necessary to meet the increased oxygen requirement of the body, which reaches 50 ml/min, 20 ml of which goes to reproductive tissues. Overall, the net change in maximum breathing ...
While both ventilation and perfusion increase going from the apex to the base, perfusion increases to a greater degree than ventilation, lowering the V/Q ratio at the base of the lungs. The principal factor involved in the creation of this V/Q gradient between the apex and the base of the lung is gravity (this is why V/Q ratios change in ...
The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration. [1]
The brainstem respiratory centers decrease alveolar ventilation (hypoventilation) to create a rise in arterial carbon dioxide (CO 2) tension, resulting in a decrease of plasma pH. [1] However, as there is limitation for decreasing respiration, respiratory compensation is less efficient at compensating for metabolic alkalosis than for acidosis.
The factors that determine the values for alveolar pO 2 and pCO 2 are: The pressure of outside air; The partial pressures of inspired oxygen and carbon dioxide; The rates of total body oxygen consumption and carbon dioxide production; The rates of alveolar ventilation and perfusion
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...