Search results
Results from the WOW.Com Content Network
The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: The partial sums (the Taylor polynomials) of the series can be used as approximations of the function ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]
Linear approximations in this case are further improved when the second derivative of a, ″ (), is sufficiently small (close to zero) (i.e., at or near an inflection point). If f {\displaystyle f} is concave down in the interval between x {\displaystyle x} and a {\displaystyle a} , the approximation will be an overestimate (since the ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The current average rate for a 30-year fixed mortgage is 7.13% for purchase and 7.15% for refinance — up 10 basis points from 7.03% for purchase and 9 basis points from 7.06% for refinance last ...
The finite difference coefficients for a given stencil are fixed by the choice of node points. The coefficients may be calculated by taking the derivative of the Lagrange polynomial interpolating between the node points, [3] by computing the Taylor expansion around each node point and solving a linear system, [4] or by enforcing that the stencil is exact for monomials up to the degree of the ...