Search results
Results from the WOW.Com Content Network
Shortwave radiation (SW) is thermal radiation in the optical spectrum, including visible (VIS), near-ultraviolet (UV), and near-infrared (NIR) spectra. There is no standard cut-off for the near-infrared range; therefore, the shortwave radiation range is also variously defined.
The Sun has a surface temperature of 5,500 °C (9,900 °F), so it emits most of its energy as shortwave radiation in near-infrared and visible wavelengths (as sunlight). In contrast, Earth's surface has a much lower temperature, so it emits longwave radiation at mid- and far-infrared wavelengths.
The Sun has a surface temperature of 5,500 °C (9,900 °F), so it emits most of its energy as shortwave radiation in near-infrared and visible wavelengths (as sunlight). In contrast, Earth's surface has a much lower temperature, so it emits longwave radiation at mid- and far- infrared wavelengths. [ 6 ]
The sun emits shortwave radiation on the visible light spectrum, and in a process called Rayleigh Scattering, the shorter wavelengths -- including blues and purples on the visible light spectrum ...
Also, out of about 340 W/m 2 of reflected shortwave (105 W/m 2) plus outgoing longwave radiation (235 W/m 2), 80-100 W/m 2 exits to space through the infrared window depending on cloudiness. About 40 W/m 2 of this transmitted amount is emitted by the surface, while most of the remainder comes from lower regions of the atmosphere. In a ...
Longwave radiation is electromagnetic thermal radiation emitted by Earth's surface and atmosphere. Longwave radiation is in the infrared band. But, the terms are not synonymous, as infrared radiation can be either shortwave or longwave. Sunlight contains significant amounts of shortwave infrared radiation. A threshold wavelength of 4 microns is ...
Details of how clouds interact with shortwave and longwave radiation at different atmospheric heights [17]. Clouds have two major effects on the Earth's energy budget: they reflect shortwave radiation from sunlight back to space due to their high albedo, but the water vapor contained inside them also absorbs and re-emits the longwave radiation sent out by the Earth's surface as it is heated by ...
In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It is also referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight. [1]: 2251