Search results
Results from the WOW.Com Content Network
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure: = For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H 2 O and −10 cm H 2 O at the end of inspiration.
Winters's formula, [1] named after R. W. Winters, [2] is a formula used to evaluate respiratory compensation when analyzing acid-base disorders in the presence of metabolic acidosis. [ 3 ] [ 4 ] It can be given as:
In those with acute respiratory failure on mechanical ventilation, "the static compliance of the total respiratory system is conventionally obtained by dividing the tidal volume by the difference between the 'plateau' pressure measured at the airway opening (PaO) during an occlusion at end-inspiration and positive end-expiratory pressure (PEEP ...
A RSBI score of less than 65 [3] indicating a relatively low respiratory rate compared to tidal volume is generally considered as an indication of weaning readiness. A patient with a rapid shallow breathing index (RSBI) of less than 105 has an approximately 80% chance of being successfully extubated, whereas an RSBI of greater than 105 virtually guarantees weaning failure. [4]
TLC: Total lung capacity: the volume in the lungs at maximal inflation, the sum of VC and RV. TV: Tidal volume: that volume of air moved into or out of the lungs in 1 breath (TV indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or V T is used.)
The following equation, provides the ratio of the pulmonary blood flow divided by the systemic blood flow and relates to any type of shunt (intracardiac or extracardiac) using variables that can be easily attained in a cardiac catheterization laboratory. Note that the abbreviations are different from the aforementioned equation to reflect the ...
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.