Search results
Results from the WOW.Com Content Network
Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.
Decision trees, influence diagrams, utility functions, and other decision analysis tools and methods are taught to undergraduate students in schools of business, health economics, and public health, and are examples of operations research or management science methods. These tools are also used to predict decisions of householders in normal and ...
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset.
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...