enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infinite divisibility (probability) - Wikipedia

    en.wikipedia.org/wiki/Infinite_divisibility...

    The concept of infinite divisibility of probability distributions was introduced in 1929 by Bruno de Finetti. This type of decomposition of a distribution is used in probability and statistics to find families of probability distributions that might be natural choices for certain models or applications.

  3. Category : Infinitely divisible probability distributions

    en.wikipedia.org/wiki/Category:Infinitely...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  4. Infinite divisibility - Wikipedia

    en.wikipedia.org/wiki/Infinite_divisibility

    The Poisson distribution, the stuttering Poisson distribution, [citation needed] the negative binomial distribution, and the Gamma distribution are examples of infinitely divisible distributions — as are the normal distribution, Cauchy distribution and all other members of the stable distribution family. The skew-normal distribution is an ...

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96 , meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean .

  8. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Since probability tables cannot be printed for every normal distribution, as there are an infinite variety of normal distributions, it is common practice to convert a normal to a standard normal (known as a z-score) and then use the standard normal table to find probabilities. [2]

  9. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The skew normal distribution; Student's t-distribution, useful for estimating unknown means of Gaussian populations. The noncentral t-distribution; The skew t distribution; The Champernowne distribution; The type-1 Gumbel distribution; The Tracy–Widom distribution; The Voigt distribution, or Voigt profile, is the convolution of a normal ...