Search results
Results from the WOW.Com Content Network
In systems and control theory, the double integrator is a canonical example of a second-order control system. [1] It models the dynamics of a simple mass in one-dimensional space under the effect of a time-varying force input u {\displaystyle {\textbf {u}}} .
Example: consider the following differential equation (Kummer's equation with a = 1 and b = 2): ″ + ′ = The roots of the indicial equation are −1 and 0. Two independent solutions are 1 / z {\displaystyle 1/z} and e z / z , {\displaystyle e^{z}/z,} so we see that the logarithm does not appear in any solution.
The tuning application, for instance, is an example of band-pass filtering. The RLC filter is described as a second-order circuit, meaning that any voltage or current in the circuit can be described by a second-order differential equation in circuit analysis. The three circuit elements, R, L and C, can be combined in a number of different ...
Mathematical Methods in Electronics Engineering involves applying mathematical principles to analyze, design, and optimize electronic circuits and systems. Key areas include: [1] [2] Linear Algebra: Used to solve systems of linear equations that arise in circuit analysis. Applications include network theory and the analysis of electrical ...
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...
In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for ...
For example, the next few coefficients: =; =; =; = … A limitation of the power series solution shows itself in this example. A numeric solution of the problem shows that the function is smooth and always decreasing to the left of η = 1 {\displaystyle \eta =1} , and zero to the right.
In the case of the second order network, when a2 > b (i.e. L1 > L2 or C2 > C1 or y > √ 3 x), it is necessary to use the circuit containing mutually coupled coils for the second order all-pass network. A cascade of second order networks with, maybe, a single first order network, can be used to give a high order response. For example, the ...