Search results
Results from the WOW.Com Content Network
Fullerene C 60. Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. [1] [2] [3] Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. [1]
Researchers have been able to increase the reactivity of fullerenes by attaching active groups to their surfaces. Buckminsterfullerene does not exhibit "superaromaticity": that is, the electrons in the hexagonal rings do not delocalize over the whole molecule. A spherical fullerene of n carbon atoms has n pi-bonding electrons, free to ...
Polyfullerene is a basic polymer of the C 60 monomer group, in which fullerene segments are connected via covalent bonds into a polymeric chain without side or bridging groups. They are called intrinsic polymeric fullerenes, or more often all C 60 polymers. Fullerene can be part of a polymer chain in many different ways.
C 70 fullerene is the fullerene molecule consisting of 70 carbon atoms. It is a cage-like fused-ring structure which resembles a rugby ball, made of 25 hexagons and 12 pentagons , with a carbon atom at the vertices of each polygon and a bond along each polygon edge.
The method was simple and efficient to prepare the material in gram amounts per day (1990) which has boosted the fullerene research and is even today applied for the commercial production of fullerenes. The discovery of practical routes to C 60 led to the exploration of a new field of chemistry involving the study of fullerenes.
Carbon nanobuds are a newly discovered allotrope of carbon in which fullerene like "buds" are covalently attached to the outer sidewalls of the carbon nanotubes. This hybrid material has useful properties of both fullerenes and carbon nanotubes. For instance, they have been found to be exceptionally good field emitters.
Heterofullerenes are classes of fullerenes, at least one carbon atom is replaced by another element. [1] [2] Based on spectroscopy, substitutions have been reported with boron (borafullerenes), [3] [4] nitrogen (azafullerenes), [5] [6] oxygen, [7] arsenic, germanium, [8] phosphorus, [9] silicon, [10] [11] iron, copper, nickel, rhodium [11] [12] and iridium. [11]
Alternatively, endohedral hydrogen fullerenes can be produced by opening and closing a fullerene by organic chemistry methods. A recent example of endohedral fullerenes includes single molecules of water encapsulated in C 60. [10] Noble gas endofullerenes are predicted to exhibit unusual polarizability.