Search results
Results from the WOW.Com Content Network
The heating value depends on the source of gas that is used and the process that is used to liquefy the gas. The range of heating value can span ±10 to 15 percent. A typical value of the higher heating value of LNG is approximately 50 MJ/kg or 21,500 BTU/lb. [2] A typical value of the lower heating value of LNG is 45 MJ/kg or 19,350 BTU/lb.
Liquefied natural gas is natural gas that has been liquefied for the purpose of storage or transport. Since transportation of natural gas requires a large network of pipeline that crosses through various terrains and oceans, a huge investment and long term planning are required. Before transport, natural gas is liquefied by pressurization.
Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.
LNG is short for liquefied natural gas and occurs when gas is cooled to about –260° F (–162° C), changing it into a liquid that can be stored and shipped safely aboard specially designed ...
Regasification is a process of converting liquefied natural gas (LNG) at −162 °C (−260 °F) temperature back to natural gas at atmospheric temperature. LNG gasification plants can be located on land as well as on floating barges, i.e. a Floating Storage and Regasification Unit (FSRU).
Steam reforming is a chemical process used to convert natural gas and steam into a syngas containing hydrogen and carbon monoxide with carbon dioxide as a byproduct. Partial oxidation and autothermal reforming are similar processes but these also require oxygen from an ASU. Synthesis gas is often a precursor to the chemical synthesis of ammonia ...
The Biden administration is pausing approvals of pending applications for liquefied natural gas exports to countries with which the U.S. does not have free trade agreements, citing environmental ...
The high pressure gas is then cooled by immersing the gas in a cooler environment; the gas loses some of its energy (heat). Linde's patent example gives an example of brine at 10°C. The high pressure gas is further cooled with a countercurrent heat exchanger; the cooler gas leaving the last stage cools the gas going to the last stage.