enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Given a norm, one can evaluate both sides of the parallelogram law above. A remarkable fact is that if the parallelogram law holds, then the norm must arise in the usual way from some inner product. In particular, it holds for the p {\displaystyle p} -norm if and only if p = 2 , {\displaystyle p=2,} the so-called Euclidean norm or standard norm.

  3. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem.

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of a parallelogram is twice the area of a triangle created by one of its diagonals. The area of a parallelogram is also equal to the magnitude of the vector cross product of two adjacent sides. Any line through the midpoint of a parallelogram bisects the area. [6]

  5. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  6. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    Parallelogram law – Sum of the squares of all 4 sides of a parallelogram equals that of the 2 diagonals; Polarization identity – Formula relating the norm and the inner product in a inner product space; Ptolemy – Roman astronomer and geographer (c. 100–170) Ptolemy's table of chords – 2nd century AD trigonometric table

  7. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.

  8. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  9. Theorem of the gnomon - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_gnomon

    The proof of the theorem is straightforward if one considers the areas of the main parallelogram and the two inner parallelograms around its diagonal: first, the difference between the main parallelogram and the two inner parallelograms is exactly equal to the combined area of the two complements;