Search results
Results from the WOW.Com Content Network
In mathematics, an involute (also known as an evolvent) is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve. [1] The evolute of an involute is the original curve.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
At sections of the curve with ′ > or ′ < the curve is an involute of its evolute. (In the diagram: The blue parabola is an involute of the red semicubic parabola, which is actually the evolute of the blue parabola.) Proof of the last property:
In the case where the rolling curve is a line and the generator is a point on the line, the roulette is called an involute of the fixed curve. If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid.
Involute, a construction in the differential geometry of curves; Exponentiation (archaic use of the term) Other uses. Involution (medicine), the shrinking of an ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In mathematics, an involutory matrix is a square matrix that is its own inverse.That is, multiplication by the matrix is an involution if and only if =, where is the identity matrix.
Three 360° loops of one arm of an Archimedean spiral. The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes.