Search results
Results from the WOW.Com Content Network
A potassium-ion battery or K-ion battery (abbreviated as KIB) is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari (President of the American Nano Society) in 2004. [1]
The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons [2] (e.g. K + (potassium ion)) while an anion is a negatively charged ion with more electrons than protons. [3] (e.g. Cl-(chloride ion) and OH-(hydroxide ion)).
In general, potassium compounds are ionic and, owing to the high hydration energy of the K + ion, have excellent water solubility. The main species in water solution are the aquo complexes [K(H 2 O) n] + where n = 6 and 7. [28]
Charge number or valence [1] of an ion is the coefficient that, when multiplied by the elementary charge, gives the ion's charge. [2]For example, the charge on a chloride ion, , is , where e is the elementary charge.
Potassium channels function to conduct potassium ions down their electrochemical gradient, doing so both rapidly (up to the diffusion rate of K + ions in bulk water) and selectively (excluding, most notably, sodium despite the sub-angstrom difference in ionic radius). [4] Biologically, these channels act to set or reset the resting potential in ...
This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution. Electrical mobility is proportional to the net charge of the particle.
Potassium is the major cation (K +, a positive ion) inside animal cells, while sodium (Na +) is the major cation outside animal cells.The difference between the concentrations of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential.
The increased positive charge within the cell now causes the potassium channels to open. Potassium ions (K +) begin to move down the electrochemical gradient (in favor of the concentration gradient and the newly established electrical gradient). As potassium moves out of the cell the potential within the cell decreases and approaches its ...