enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    The problem of edge coloring has also been studied in the distributed model. Panconesi & Rizzi (2001) achieve a (2Δ − 1)-coloring in O(Δ + log * n) time in this model. The lower bound for distributed vertex coloring due to Linial (1992) applies to the distributed edge coloring problem as well.

  3. Erdős–Faber–Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Erdős–Faber–Lovász...

    In graph theory, the Erdős–Faber–Lovász conjecture is a problem about graph coloring, named after Paul Erdős, Vance Faber, and László Lovász, who formulated it in 1972. [1] It says: If k complete graphs , each having exactly k vertices, have the property that every pair of complete graphs has at most one shared vertex, then the union ...

  4. BigPicture - Wikipedia

    en.wikipedia.org/wiki/BigPicture

    BigPicture is a project management and portfolio management app for Jira environment. First released in 2014 and developed by SoftwarePlant (now by AppFire), it delivers tools for project managers that the core Jira lacks, i.e. roadmap, a Gantt chart, Scope (work breakdown structure), risks, resources and teams modules.

  5. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  6. List edge-coloring - Wikipedia

    en.wikipedia.org/wiki/List_edge-coloring

    A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k -edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has a proper ...

  7. Property graph - Wikipedia

    en.wikipedia.org/wiki/Property_graph

    In computer science terms, a property graph is a data structure representing entities associated by directed relationships, where the nodes and relations can both include multiple attributes / properties; In terms of graph theory, a property graph is a directed multigraph, whose vertices/nodes represent the entities of the corresponding data ...

  8. Path coloring - Wikipedia

    en.wikipedia.org/wiki/Path_coloring

    This problem is a special case of a more general class of graph routing problems, known as call scheduling. In both the above problems, the goal is usually to minimise the number of colors used in the coloring. In different variants of path coloring, may be a simple graph, digraph or multigraph.

  9. Strong coloring - Wikipedia

    en.wikipedia.org/wiki/Strong_coloring

    A strong coloring is equivalent to a partition of the vertices into disjoint independent-transversals (each independent-transversal is a single "color"). This is in contrast to graph coloring, which is a partition of the vertices of a graph into a given number of independent sets, without the requirement that these independent sets be transversals.