Search results
Results from the WOW.Com Content Network
[b] A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, [c] but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state.
For example, a multi-spindle lathe is used to rotate the material on its axis to effectively increase the productivity of cutting, deformation and turning operations. [2] The angle of rotation is a linear function of time, which modulo 360° is a periodic function. An example of this is the two-body problem with circular orbits.
A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...
In mathematics and physics, the plate trick, also known as Dirac's string trick (after Paul Dirac, who introduced and popularized it), [1] [2] the belt trick, or the Balinese cup trick (it appears in the Balinese candle dance), is any of several demonstrations of the idea that rotating an object with strings attached to it by 360 degrees does not return the system to its original state, while ...
A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = ( ), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.
The above definition is part of the ISQ, formalized in the international standard ISO 80000-3 (Space and time), [87] and adopted in the International System of Units (SI). [88] [89] Rotation count or number of revolutions is a quantity of dimension one, resulting from a ratio of angular displacement. It can be negative and also greater than 1 ...
The angular displacement (symbol θ, ϑ, or φ) – also called angle of rotation, rotational displacement, or rotary displacement – of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates (revolves or spins) around a centre or axis of rotation.