Search results
Results from the WOW.Com Content Network
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...
For stars with similar metallicity to the Sun, the theoretical minimum mass the star can have, and still undergo fusion at the core, is estimated to be about 75 M J. [13] [14] When the metallicity is very low, however, a recent study of the faintest stars found that the minimum star size seems to be about 8.3% of the solar mass, or about 87 M J.
Researchers have discovered a white dwarf (a dead star), with an oxygen atmosphere surrounding it -- the first of its kind. Astronomers managed to pick up the star from spectral lines: colored ...
A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and trace heavier elements. Its total mass mainly determines its evolution and eventual fate. A star shines for most of its active life due to the thermonuclear fusion of hydrogen into helium in its core.
The properties and evolution of a star are closely related to its mass, so the IMF is an important diagnostic tool for astronomers studying large quantities of stars. For example, the initial mass of a star is the primary factor of determining its colour , luminosity , radius, radiation spectrum, and quantity of materials and energy it emitted ...
The other crucial area of investigation is the hydrodynamics of the plasma that makes up the dying star; how it behaves during the core collapse determines when and how the shockwave forms and when and how it stalls and is reenergized. [24]
Often when a star is a member of a pair of close-orbiting binary stars, the tidal attraction of the gasses near the center of mass is sufficient to pull gas from one star onto its partner. This effect is especially prominent when the partner is a white dwarf, neutron star, or black hole. Mass loss in binary systems has particularly interesting ...