Search results
Results from the WOW.Com Content Network
A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity ...
In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.
A conserved quantity is a property or value that remains constant over time in a system even when changes occur in the system. In mathematics , a conserved quantity of a dynamical system is formally defined as a function of the dependent variables , the value of which remains constant along each trajectory of the system.
Another approach, and perhaps the most efficient for finding conserved quantities, is the Hamilton–Jacobi equation. Emmy Noether's work on the invariance theorem began in 1915 when she was helping Felix Klein and David Hilbert with their work related to Albert Einstein 's theory of general relativity [ 8 ] : 31 By March 1918 she had most of ...
One reason that conservation equations frequently occur in physics is Noether's theorem. This states that whenever the laws of physics have a continuous symmetry, there is a continuity equation for some conserved physical quantity. The three most famous examples are:
In quantum field theory, internal symmetries also result in conserved quantities. For example, the U(1) gauge transformation of QED implies the conservation of the electric charge. Likewise, if a theory possesses an internal chiral or axial symmetry, there will be a conserved quantity, which is called the axial charge.
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
Conservation form or Eulerian form refers to an arrangement of an equation or system of equations, usually representing a hyperbolic system, that emphasizes that a property represented is conserved, i.e. a type of continuity equation. The term is usually used in the context of continuum mechanics.