Ads
related to: quadric surface problems examples area of cylinder worksheetThis site is a teacher's paradise! - The Bender Bunch
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
For example, a hyperboloid of one sheet is a quadric surface in ruled by two different families of lines, one line of each passing through each point of the surface; each family corresponds under the Plücker map to a conic section within the Klein quadric in .
In general, the operation of rotation does not work correctly on non-spherical QGA quadric surface entities. Rotation also does not work correctly on the QGA point entities. Attempting to rotate a QGA quadric surface may result in a different type of quadric surface, or a quadric surface that is rotated and distorted in an unexpected way.
Ads
related to: quadric surface problems examples area of cylinder worksheetThis site is a teacher's paradise! - The Bender Bunch