enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    Most importantly, the maximum lift-to-drag ratio is independent of the weight of the aircraft, the area of the wing, or the wing loading. It can be shown that two main drivers of maximum lift-to-drag ratio for a fixed wing aircraft are wingspan and total wetted area. One method for estimating the zero-lift drag coefficient of an aircraft is the ...

  3. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    It is also useful to show the relationship between section lift coefficient and drag coefficient. The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The ...

  4. Aspect ratio (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Aspect_ratio_(aeronautics)

    An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]

  5. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    By increasing the wing loading the average speed achieved across country can be increased to take advantage of strong thermals. With a higher wing loading, a given lift-to-drag ratio is achieved at a higher airspeed than with a lower wing loading, and this allows a faster average speed across country. The ballast can be ejected overboard when ...

  6. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.

  7. Angle of attack - Wikipedia

    en.wikipedia.org/wiki/Angle_of_attack

    Platform angle of attack Coefficients of drag and lift versus angle of attack. Stall speed corresponds to the angle of attack at the maximum coefficient of lift (C LMAX) A typical lift coefficient curve for an airfoil at a given airspeed. The lift coefficient of a fixed-wing aircraft varies with angle of attack. Increasing angle of attack is ...

  8. Camber (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Camber_(aerodynamics)

    It is used for near-supersonic flight and produces a higher lift-to-drag ratio at near supersonic flight than traditional airfoils. Supercritical airfoils employ a flattened upper surface, highly cambered (curved) aft section, and greater leading-edge radius as compared to traditional airfoil shapes. These changes delay the onset of wave drag.

  9. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    In both cases the lift vector is the same (as seen by an observer on the ground), but in the latter the vertical axis of the aircraft points downwards, making the lift vector's sign negative. In turning flight the load factor is normally greater than +1. For example, in a turn with a 60° angle of bank the load factor is +2. Again, if the same ...