Search results
Results from the WOW.Com Content Network
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
Product of vectors in Minkowski space is an example of indefinite inner product, although, technically speaking, it is not an inner product according to the standard definition above. Minkowski space has four dimensions and indices 3 and 1 (assignment of "+" and "−" to them differs depending on conventions ).
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be a bilinear map and ( H , H , ⋅ , ⋅ ) {\displaystyle (H,H,\langle \cdot ,\cdot \rangle )} will form a dual system .
An important early example was the Banach algebra of essentially bounded measurable functions on a measure space X. This set of functions is a Banach space under pointwise addition and scalar multiplication. With the operation of pointwise multiplication, it becomes a special type of Banach space, one now called a commutative von Neumann algebra.
Therefore, the space of square integrable functions is a Banach space, under the metric induced by the norm, which in turn is induced by the inner product. As we have the additional property of the inner product, this is specifically a Hilbert space , because the space is complete under the metric induced by the inner product.
Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm, but it is not complete for this norm. An inner ...