Search results
Results from the WOW.Com Content Network
It does not follow, however, that light travels a distance ct in a time t, as the red worldline illustrates. While it always moves locally at c, its time in transit (about 13 billion years) is not related to the distance traveled in any simple way, since the universe expands as the light beam traverses space and time. The distance traveled is ...
Spectral lines of their light can be used to determine their redshift. For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over ...
Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light in vacuum (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons ) may travel at the speed of light, and that nothing may travel faster.
Because this light has only travelled forward as well as away from the star, it produces the illusion of an echo expanding faster than the speed of light. [ 3 ] In the first illustration above, light following path A is emitted from the original source and arrives at the observer first.
The speed at which light propagates through transparent materials, such as glass or air, is less than c; similarly, the speed of electromagnetic waves in wire cables is slower than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material ( n = c / v ).
Formally, c is a conversion factor for changing the unit of time to the unit of space. [4] This makes it the only speed which does not depend either on the motion of an observer or a source of light and / or gravity. Thus, the speed of "light" is also the speed of gravitational waves, and further the speed of any massless particle.
Describing the cosmological expansion origin of redshift, cosmologist Edward Robert Harrison said, "Light leaves a galaxy, which is stationary in its local region of space, and is eventually received by observers who are stationary in their own local region of space. Between the galaxy and the observer, light travels through vast regions of ...
Therefore, it is not remarkable that according to Hubble's law, galaxies farther than the Hubble distance recede faster than the speed of light. Such recession speeds do not correspond to faster-than-light travel. Many popular accounts attribute the cosmological redshift to the expansion of space.