enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Three-gap theorem - Wikipedia

    en.wikipedia.org/wiki/Three-gap_theorem

    The three-gap theorem can be stated geometrically in terms of points on a circle. In this form, it states that if one places points on a circle, at angles of ,, …, from the starting point, then there will be at most three distinct distances between pairs of points in adjacent positions around the circle.

  3. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    Draw three circumcircles (Miquel's circles) to triangles AB´C´, A´BC´, and A´B´C. Miquel's theorem states that these circles intersect in a single point M, called the Miquel point. In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal, as are the three supplementary angles MA´C, MB´A and MC´B. [2] [3]

  4. Circular arc - Wikipedia

    en.wikipedia.org/wiki/Circular_arc

    A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...

  5. Geometric terms of location - Wikipedia

    en.wikipedia.org/wiki/Geometric_terms_of_location

    Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    For every concave kite there exist two circles tangent to two of the sides and the extensions of the other two: one is interior to the kite and touches the two sides opposite from the concave angle, while the other circle is exterior to the kite and touches the kite on the two edges incident to the concave angle. [27]

  8. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The angle is computed by computing the trigonometric functions of a right triangle whose vertices are the (external) homothetic center, a center of a circle, and a tangent point; the hypotenuse lies on the tangent line, the radius is opposite the angle, and the adjacent side lies on the line of centers.

  9. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    Construct a pentagon in a circle by one of the methods shown in constructing a pentagon. Extend a line from each vertex of the pentagon through the center of the circle to the opposite side of that same circle. Where each line cuts the circle is a vertex of the decagon.