enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    In Euclidean space, there is a unique circle passing through any given three non-collinear points P 1, P 2, P 3. Using Cartesian coordinates to represent these points as spatial vectors, it is possible to use the dot product and cross product to calculate the radius and center of the circle. Let

  3. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    h = the height of the semi-ellipsoid from the base cicle's center to the edge Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...

  5. Centre (geometry) - Wikipedia

    en.wikipedia.org/wiki/Centre_(geometry)

    A tangential polygon has each of its sides tangent to a particular circle, called the incircle or inscribed circle. The centre of the incircle, called the incentre, can be considered a centre of the polygon. A cyclic polygon has each of its vertices on a particular circle, called the circumcircle or circumscribed circle. The centre of the ...

  6. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    A circle is drawn centered on the midpoint of the line segment OP, having diameter OP, where O is again the center of the circle C. The intersection points T 1 and T 2 of the circle C and the new circle are the tangent points for lines passing through P, by the following argument.

  7. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]

  8. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    A nine-point circle bisects a line segment going from the corresponding triangle's orthocenter to any point on its circumcircle. Figure 4. The center N of the nine-point circle bisects a segment from the orthocenter H to the circumcenter O (making the orthocenter a center of dilation to both circles): [6]: p.152

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that