Search results
Results from the WOW.Com Content Network
In a Kendrick mass analysis, the Kendrick mass defect is plotted as function of nominal Kendrick mass for ions observed in a mass spectrum. [11] Ions of the same family, for example the members of an alkylation series, have the same Kendrick mass defect but different nominal Kendrick mass and are positioned along a horizontal line on the plot.
The value of K f, which depends on the nature of the solvent can be found out by the following equation: = R is the ideal gas constant. M is the molar mass of the solvent. T f is the freezing point of the pure solvent in kelvin.
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
Molecular structures are graphs with chemical constraints such as valences, bond multiplicity and fragments. These generators are the core of CASE systems. In a generator, the molecular formula is the basic input. If fragments are obtained from the experimental data, they can also be used as inputs to accelerate structure generation.
Knowing the analytical concentrations of reactants initially in the reaction vessel and in the burette, all analytical concentrations can be derived as a function of the volume (or mass) of titrant added. The equilibrium constants may be derived by best-fitting of the experimental data with a chemical model of the equilibrium system.
m = mass of each molecule (all molecules are identical in kinetic theory), γ ( p ) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_{\text{B}}T/mc^{2}}
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.