enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration. However, due to buoyancy, the balloon is pushed "out of the way" by the air and will drift in the same direction as the car's acceleration.

  3. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise. Situations where the density of the plume fluid is greater than its surroundings (i.e. in still conditions, its natural tendency would be to sink), but the flow has sufficient initial momentum to carry it some ...

  4. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).

  5. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    Buoyancy also applies to fluid mixtures, and is the most common driving force of convection currents. In these cases, the mathematical modelling is altered to apply to continua, but the principles remain the same. Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water.

  6. Lifting gas - Wikipedia

    en.wikipedia.org/wiki/Lifting_gas

    However, buoyancy depends upon the difference of the densities (ρ gas) − (ρ air) rather than upon their ratios. Thus the difference in buoyancies is about 8%, as seen from the buoyancy equation: F B = (ρ air - ρ gas) × g × V. Where F B = Buoyant force (in newton); g = gravitational acceleration = 9.8066 m/s 2 = 9.8066 N/kg; V = volume ...

  7. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    Angular frequency (or angular speed) is the magnitude of the vector quantity that is angular velocity. The term angular frequency vector is sometimes used as a synonym for the vector quantity angular velocity. [13] One revolution is equal to 2π radians, hence [13] [14]

  8. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  9. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be