Search results
Results from the WOW.Com Content Network
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The time difference, scaled by the speed of sound through water and divided by two, is the distance between the two platforms. ... or go deeper and faster, and thus ...
The name was given because the sound slowly decreases in frequency over about seven minutes. It was recorded using an autonomous hydrophone array. [8] The sound has been picked up several times each year since 1997. [9] One of the hypotheses on the origin of the sound is moving ice in Antarctica. Sound spectrograms of vibrations caused by ...
[1] [2] On ocean basin scales, this technique is also known as acoustic thermometry. The technique relies on precisely measuring the time it takes sound signals to travel between two instruments, one an acoustic source and one a receiver, separated by ranges of 100–5,000 kilometres (54–2,700 nmi). If the locations of the instruments are ...
Sound travels through 20 °C water at approximately 1482 meters per second, compared to the 332 m/s speed of sound through air. [10] [11] In the world's oceans, sound travels most efficiently at a depth of approximately 1000 meters. Sound waves that travel at this depth travel at minimum speed and are trapped in a layer known as the Sound ...