enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  3. Andrew Gelman - Wikipedia

    en.wikipedia.org/wiki/Andrew_Gelman

    Andrew Eric Gelman (born February 11, 1965) is an American statistician and professor of statistics and political science at Columbia University. Gelman received bachelor of science degrees in mathematics and in physics from MIT , where he was a National Merit Scholar , in 1986.

  4. Stan (software) - Wikipedia

    en.wikipedia.org/wiki/Stan_(software)

    Stan: A probabilistic programming language for Bayesian inference and optimization, Journal of Educational and Behavioral Statistics. Hoffman, Matthew D., Bob Carpenter, and Andrew Gelman (2012). Stan, scalable software for Bayesian modeling Archived 2015-01-21 at the Wayback Machine, Proceedings of the NIPS Workshop on Probabilistic Programming.

  5. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  6. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The technique was originally developed by Gelman and T. Little in 1997, [6] building upon ideas of Fay and Herriot [7] and R. Little. [8] It was subsequently expanded on by Park, Gelman, and Bafumi in 2004 and 2006. It was proposed for use in estimating US-state-level voter preference by Lax and Philips in 2009.

  7. Hyperparameter (Bayesian statistics) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(Bayesian...

    In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:

  8. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    As statistics and data sets have become more complex, [a] [b] questions have arisen regarding the validity of models and the inferences drawn from them. There is a wide range of conflicting opinions on modelling. Models can be based on scientific theory or ad hoc data analysis, each employing different methods. Advocates exist for each approach ...

  9. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    In decline curve analysis to describe oil or gas production decline curve for multiple wells, observational units are oil or gas wells in a reservoir region, and each well has each own temporal profile of oil or gas production rates (usually, barrels per month). [4] Data structure for the hierarchical modeling retains nested data structure.