Search results
Results from the WOW.Com Content Network
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture of ideal gases such as air). With increasing pressure, or decreasing temperature, the water vapor content approaches saturation and at the saturation point it will be in thermodynamic equilibrium with its condensed state .
The Goff–Gratch equation is one (arguably the first reliable in history) amongst many experimental correlation proposed to estimate the saturation water vapor pressure at a given temperature. Another similar equation based on more recent data is the Arden Buck equation .
According to the American Meteorological Society Glossary of Meteorology, saturation vapor pressure properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid. [17]
Tetens equation, calculates the saturation vapor pressure of water over liquid and ice; See also. Teten This page was last edited on 26 February 2017, at 15:35 (UTC ...
, saturation vapor pressure; The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula is Tetens' equation from [15] used to find the saturation vapor pressure is: = (()) where:
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure P c, the critical temperature T c, and the acentric factor ω are known.