enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    Examples of quantitative forecasting methods are [citation needed] last period demand, simple and weighted N-Period moving averages, simple exponential smoothing, Poisson process model based forecasting [15] and multiplicative seasonal indexes. Previous research shows that different methods may lead to different level of forecasting accuracy.

  3. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  4. EWMA chart - Wikipedia

    en.wikipedia.org/wiki/EWMA_chart

    EWMA weights samples in geometrically decreasing order so that the most recent samples are weighted most highly while the most distant samples contribute very little. [ 2 ] : 406 Although the normal distribution is the basis of the EWMA chart, the chart is also relatively robust in the face of non-normally distributed quality characteristics.

  5. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]

  6. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    The technique essentially involves using data from, for example, censuses relating to various types of people corresponding to different characteristics (e.g., age, race), in a first step to estimate the relationship between those types and individual preferences (i.e., multi-level regression of the dataset).

  7. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.

  8. Delphi method - Wikipedia

    en.wikipedia.org/wiki/Delphi_method

    Quantitative methods produced errors of 10–15%, and traditional unstructured forecast methods had errors of about 20%. (This is only one example; the overall accuracy of the technique is mixed.) The Delphi method has also been used as a tool to implement multi-stakeholder approaches for participative policy-making in developing countries.

  9. Unit-weighted regression - Wikipedia

    en.wikipedia.org/wiki/Unit-weighted_regression

    An example may clarify how unit weights can be useful in practice. Brenna Bry and colleagues (1982) addressed the question of what causes drug use in adolescents. Previous research had made use of multiple regression; with this method, it is natural to look for the best predictor, the one with the highest beta weight.