enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    (The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]

  3. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.

  4. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    that carry both the indices (x, α) operated on by Lorentz transformations and the indices (p, σ) operated on by Poincaré transformations. This may be called the Lorentz–Poincaré connection. [25] To exhibit the connection, subject both sides of equation to a Lorentz transformation resulting in for e.g. u,

  5. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    The transformations of these functions in spacetime are given below. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [8] [9]

  6. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψ j σ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] () where D(Λ) is some finite-dimensional representation, i.e. a matrix.

  7. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  8. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  9. Indefinite orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Indefinite_orthogonal_group

    This notation is related to the notation O + (1, 3) for the orthochronous Lorentz group, where the + refers to preserving the orientation on the first (temporal) dimension. The group O( p , q ) is also not compact , but contains the compact subgroups O( p ) and O( q ) acting on the subspaces on which the form is definite.