Search results
Results from the WOW.Com Content Network
Hutton's definitions in 1795 [4]. The ancient Greek mathematician Euclid defined five types of quadrilateral, of which four had two sets of parallel sides (known in English as square, rectangle, rhombus and rhomboid) and the last did not have two sets of parallel sides – a τραπέζια (trapezia [5] literally 'table', itself from τετράς (tetrás) 'four' + πέζα (péza) 'foot ...
Quadrilaterals that are both orthodiagonal and equidiagonal, and in which the diagonals are at least as long as all of the quadrilateral's sides, have the maximum area for their diameter among all quadrilaterals, solving the n = 4 case of the biggest little polygon problem. The square is one such quadrilateral, but there are infinitely many others.
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
A parallelogram has rotational symmetry of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square.
For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.
Placing the point P on any of the four vertices of the rectangle yields the square of the diagonal of the rectangle being equal to the sum of the squares of the width and length of the rectangle, which is the Pythagorean theorem.
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.