Search results
Results from the WOW.Com Content Network
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
This can now be considered a binomial distribution with = trial, so a binary regression is a special case of a binomial regression. If these data are grouped (by adding counts), they are no longer binary data, but are count data for each group, and can still be modeled by a binomial regression; the individual binary outcomes are then referred ...
The negative multinomial distribution, a generalization of the negative binomial distribution. The Dirichlet negative multinomial distribution, a generalization of the beta negative binomial distribution. The generalized multivariate log-gamma distribution; The Marshall–Olkin exponential distribution
But the VGLM framework readily handles models such as zero-inflated Poisson regression, zero-altered Poisson (hurdle) regression, positive-Poisson regression, and negative binomial regression. As another example, for the linear model, the variance of a normal distribution is relegated as a scale parameter and it is treated often as a nuisance ...
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...
For example, a simple univariate regression may propose (,) = +, suggesting that the researcher believes = + + to be a reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β ...
For example, Poisson regression analysis is commonly used to model count data. If overdispersion is a feature, an alternative model with additional free parameters may provide a better fit. If overdispersion is a feature, an alternative model with additional free parameters may provide a better fit.