Search results
Results from the WOW.Com Content Network
Stable stratifications can become unstable if layers change density. This can happen due to outside influences (for instance, if water evaporates from a freshwater lens , making it saltier and denser, or if a pot or layered beverage is heated from below, making the bottom layer less dense).
Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. [ clarification needed ] [ 1 ] Atmospheric instability encourages vertical motion, which is directly correlated to different types of weather systems and their severity.
A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements (such as in orographic lifting , where an air mass is displaced upwards as it is blown by wind up the rising slope of a mountain range) tend to become larger, resulting in turbulent ...
Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. [1]
Like a ball balanced on top of a hill, denser fluid lying above less dense fluid would be dynamically unstable: overturning motions can lower the center of gravity, and thus will occur spontaneously, rapidly producing a stable stratification (see also stratification (water)) which is thus the observed condition almost all the time.
In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically ...
The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. [1] The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz , Kelvin , Rayleigh and Reynolds during the nineteenth ...
The most important feature of baroclinic instability is that it exists even in the situation of rapid rotation (small Rossby number) and strong stable stratification (large Richardson's number) typically observed in the atmosphere. [citation needed] The energy source for baroclinic instability is the potential energy in the environmental flow.