Search results
Results from the WOW.Com Content Network
A counting Bloom filter is a probabilistic data structure that is used to test whether the number of occurrences of a given element in a sequence exceeds a given threshold. As a generalized form of the Bloom filter, false positive matches are possible, but false negatives are not – in other words, a query returns either "possibly bigger or equal than the threshold" or "definitely smaller ...
In computing, the count–min sketch (CM sketch) is a probabilistic data structure that serves as a frequency table of events in a stream of data. It uses hash functions to map events to frequencies, but unlike a hash table uses only sub-linear space , at the expense of overcounting some events due to collisions .
It does not work with nested tables, HTML tables, or tables contained in templates. It will also ignore <nowiki>...</nowiki> tags and <pre>...</pre> tags. The template works by getting the wikitext source of a page and counting the number of tables in that source.
A symbol prepended to _ binds the match to that variable name while a symbol appended to _ restricts the matches to nodes of that symbol. Note that even blanks themselves are internally represented as Blank[] for _ and Blank[x] for _x. The Mathematica function Cases filters elements of the first argument that match the pattern in the second ...
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
The college football bowl schedule doesn't stop for Christmas Eve. San Jose State and South Florida meet in the Hawaii Bowl.
Appearing alongside her mom and dad in the two-minute video, the family first repeated the "we listen and we don't judge" mantra before Sam began an admission about her dish use.
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.