enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. True RMS converter - Wikipedia

    en.wikipedia.org/wiki/True_RMS_converter

    For example, if 120 V AC RMS is applied to a resistive heating element it would heat up by exactly the same amount as if 120 V DC were applied. This principle was exploited in early thermal converters. The AC signal would be applied to a small heating element that was matched with a thermistor, which could be used in a DC measuring circuit.

  3. NEMA size - Wikipedia

    en.wikipedia.org/wiki/NEMA_size

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  4. 25 kV AC railway electrification - Wikipedia

    en.wikipedia.org/wiki/25_kV_AC_railway...

    The choice of 25 kV was related to the efficiency of power transmission as a function of voltage and cost, not based on a neat and tidy ratio of the supply voltage. For a given power level, a higher voltage allows for a lower current and usually better efficiency at the greater cost for high-voltage equipment.

  5. Form factor (electronics) - Wikipedia

    en.wikipedia.org/wiki/Form_factor_(electronics)

    AC measuring instruments are often built with specific waveforms in mind. For example, many multimeters on their AC ranges are specifically scaled to display the RMS value of a sine wave. Since the RMS calculation can be difficult to achieve digitally, the absolute average is calculated instead and the result multiplied by the form factor of a ...

  6. Three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Three-phase_electric_power

    A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three-phase motors also vibrate less and hence last longer than single-phase motors of the same power used under the same conditions.

  7. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t

  8. Bypass ratio - Wikipedia

    en.wikipedia.org/wiki/Bypass_ratio

    The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. [1] A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

  9. Alternating current - Wikipedia

    en.wikipedia.org/wiki/Alternating_current

    A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.