enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Displacement (fluid) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(fluid)

    In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.

  3. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Archimedes' principle shows the buoyant force and displacement of fluid. However, the concept of Archimedes' principle can be applied when considering why objects float. Proposition 5 of Archimedes' treatise On Floating Bodies states that

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...

  5. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  6. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ˙). It contrasts with mass flow rate, which is the other main type of fluid flow rate.

  7. Buckley–Leverett equation - Wikipedia

    en.wikipedia.org/wiki/Buckley–Leverett_equation

    In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.

  8. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  9. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Measure of sustained displacement: the first integral with respect to time of displacement m⋅s L T: vector Acceleration: a →: Rate of change of velocity per unit time: the second time derivative of position m/s 2: L T −2: vector Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: pseudovector Angular ...