enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular senescence - Wikipedia

    en.wikipedia.org/wiki/Cellular_senescence

    The phosphorylation cascade initiated by these two kinases causes the eventual arrest of the cell cycle. Depending on the severity of the DNA damage, the cells may no longer be able to undergo repair and either go through apoptosis or cell senescence. [8] Such senescent cells in mammalian culture and tissues retain DSBs and DDR markers. [14]

  3. Senescence - Wikipedia

    en.wikipedia.org/wiki/Senescence

    Senescence (/ s ɪ ˈ n ɛ s ə n s /) or biological aging is the gradual deterioration of functional characteristics in living organisms. Whole organism senescence involves an increase in death rates or a decrease in fecundity with increasing age, at least in the later part of an organism's life cycle.

  4. Immunosenescence - Wikipedia

    en.wikipedia.org/wiki/Immunosenescence

    T cells' functional capacity is most influenced by aging effects. Age-related alterations are evident in all T-cell development stages, making them a significant factor in immunosenescence. [27] T-cell function decline begins with the progressive involution of the thymus, which is the organ essential

  5. Hallmarks of aging - Wikipedia

    en.wikipedia.org/wiki/Hallmarks_of_aging

    Senescence can be induced by several factors, including telomere shortening, [37] DNA damage [38] and stress. Since the immune system is programmed to seek out and eliminate senescent cells, [39] it might be that senescence is one way for the body to rid itself of cells damaged beyond repair. The links between cell senescence and aging are several:

  6. Hayflick limit - Wikipedia

    en.wikipedia.org/wiki/Hayflick_limit

    The typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence. As the cell divides, the telomeres on the ends of chromosomes shorten. The Hayflick limit is the limit on cell replication imposed by the shortening of telomeres with each division. This end stage is known as cellular senescence.

  7. The strange reason why your body ages most rapidly ... - AOL

    www.aol.com/finance/strange-reason-why-body-ages...

    It is in line with the 12 hallmarks of aging, such as chronic inflammation and cellular senescence, that happen on a molecular level as people grow older. It also explains how older adults ...

  8. Senescence-associated secretory phenotype - Wikipedia

    en.wikipedia.org/wiki/Senescence-associated...

    Senescence-associated secretory phenotype (SASP) is a phenotype associated with senescent cells wherein those cells secrete high levels of inflammatory cytokines, immune modulators, growth factors, and proteases. [1] [2] SASP may also consist of exosomes and ectosomes containing enzymes, microRNA, DNA fragments, chemokines, and other bioactive ...

  9. Senolytic - Wikipedia

    en.wikipedia.org/wiki/Senolytic

    Senescent cells have a low pH due to their high lysosomal content and leaking lysosomal membranes. This low pH forms the basis of senescence-associated beta-galactosidase (SA-β-gal) staining of senescent cells. To help neutralize their low pH, senescent cells produce high levels of GLS1; inhibiting the activity of this enzyme exposes senescent ...