Search results
Results from the WOW.Com Content Network
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps: [ 1 ] | ℓ − s | ≤ j ≤ ℓ + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is ...
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...
The magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field (the Zeeman effect) — hence the name magnetic quantum number. However, the actual magnetic dipole moment of an electron in an atomic orbital arises not only from the electron angular momentum but also from the electron spin ...
The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the -axis perpendicular to the cross-section, weighted by its density. This is also called the polar moment of the area, and is the sum of the second moments about the - and -axes. [24]
The spin of a charged particle is associated with a magnetic dipole moment with a g-factor that differs from 1. (In the classical context, this would imply the internal charge and mass distributions differing for a rotating object. [4]) The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative ...
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).