Search results
Results from the WOW.Com Content Network
The cytosolic acetyl-CoA can also condense with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA which is the rate-limiting step controlling the synthesis of cholesterol. [16] Cholesterol can be used as is, as a structural component of cellular membranes, or it can be used to synthesize steroid hormones , bile salts , and vitamin D .
However, this acetyl-CoA needs to be transported into cytosol where the synthesis of fatty acids and cholesterol occurs. This cannot occur directly. To obtain cytosolic acetyl-CoA, citrate (produced by the condensation of acetyl-CoA with oxaloacetate) is removed from the citric acid cycle and carried across the inner mitochondrial membrane into ...
HMG-CoA synthase: Acetoacetyl-CoA condenses with another Acetyl-CoA molecule to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA reductase: HMG-CoA is reduced to mevalonate by NADPH. This is the rate limiting step in cholesterol synthesis, which is why this enzyme is a good target for pharmaceuticals . mevalonate-5-kinase
Cholesterol can be made from acetyl-CoA through a multiple-step pathway known as isoprenoid pathway. Cholesterols are essential because they can be modified to form different hormones in the body such as progesterone. [6] 70% of cholesterol biosynthesis occurs in the cytosol of liver cells. [citation needed]
Synthesis within the body starts with the mevalonate pathway where two molecules of acetyl CoA condense to form acetoacetyl-CoA. This is followed by a second condensation between acetyl CoA and acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl CoA . [38] This molecule is then reduced to mevalonate by the enzyme HMG-CoA reductase.
Fatty acid synthesis starts with acetyl-CoA and builds up by the addition of two-carbon units. Fatty acid synthesis occurs in the cytoplasm of cells while oxidative degradation occurs in the mitochondria. Many of the enzymes for the fatty acid synthesis are organized into a multienzyme complex called fatty acid synthase. [5]
Cholesterol is synthesized from acetyl CoA. [12] The pathway is shown below: Cholesterol synthesis pathway. More generally, this synthesis occurs in three stages, with the first stage taking place in the cytoplasm and the second and third stages occurring in the endoplasmic reticulum. [9] The stages are as follows: [12] 1.
In biochemistry, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway.