enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Unlike an ideal inviscid fluid, a viscous flow past a cylinder, no matter how small the viscosity, will acquire a thin boundary layer adjacent to the surface of the cylinder. Boundary layer separation will occur, and a trailing wake will exist in the flow behind the cylinder. The pressure at each point on the wake side of the cylinder will be ...

  4. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    Example of a parallel shear flow. In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,

  5. Taylor–Proudman theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor–Proudman_theorem

    The flow will curve around the imaginary cylinders just like the real due to the Taylor–Proudman theorem, which states that the flow in a rotating, homogeneous, inviscid fluid are 2-dimensional in the plane orthogonal to the rotation axis and thus there is no variation in the flow along the axis, often taken to be the ^ axis.

  6. Hamiltonian fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_fluid_mechanics

    Take the simple example of a barotropic, inviscid vorticity-free fluid.. Then, the conjugate fields are the mass density field ρ and the velocity potential φ.The Poisson bracket is given by

  7. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    The condition can be expressed in a number of ways. One is that there cannot be an infinite change in velocity at the trailing edge. Although an inviscid fluid can have abrupt changes in velocity, in reality viscosity smooths out sharp velocity changes. If the trailing edge has a non-zero angle, the flow velocity there must be zero.

  8. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    Then, even for an adiabatic, chemically-homogenous fluid, the density can vary when the pressure changes, e.g. with Bernoulli. For inviscid fluids, the viscosity tensor τ is zero. Thus for an inviscid, barotropic fluid with conservative body forces, the vorticity equation simplifies to

  9. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    Selected contributions from these development directions is displayed in the following sections. This means that some known contributions of research and development directions are not included. For example, is the group contribution method applied to a shear viscosity model not displayed. Even though it is an important method, it is thought to ...