enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    In fluid mechanics, Helmholtz's theorems, named after Hermann von Helmholtz, describe the three-dimensional motion of fluid in the vicinity of vortex lines. These theorems apply to inviscid flows and flows where the influence of viscous forces are small and can be ignored. Helmholtz's three theorems are as follows: [1] Helmholtz's first theorem

  4. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Unlike an ideal inviscid fluid, a viscous flow past a cylinder, no matter how small the viscosity, will acquire a thin boundary layer adjacent to the surface of the cylinder. Boundary layer separation will occur, and a trailing wake will exist in the flow behind the cylinder. The pressure at each point on the wake side of the cylinder will be ...

  5. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    The condition can be expressed in a number of ways. One is that there cannot be an infinite change in velocity at the trailing edge. Although an inviscid fluid can have abrupt changes in velocity, in reality viscosity smooths out sharp velocity changes. If the trailing edge has a non-zero angle, the flow velocity there must be zero.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...

  7. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In fluid dynamics, the flowfield near the origin corresponds to a stagnation point. Note that the fluid at the origin is at rest (this follows on differentiation of f (z) = z 2 at z = 0 ). The ψ = 0 streamline is particularly interesting: it has two (or four) branches, following the coordinate axes, i.e. x = 0 and y = 0 .

  8. Taylor–Proudman theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor–Proudman_theorem

    The flow will curve around the imaginary cylinders just like the real due to the Taylor–Proudman theorem, which states that the flow in a rotating, homogeneous, inviscid fluid are 2-dimensional in the plane orthogonal to the rotation axis and thus there is no variation in the flow along the axis, often taken to be the ^ axis.

  9. Stagnation point flow - Wikipedia

    en.wikipedia.org/wiki/Stagnation_point_flow

    In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point (in two-dimensional flows) or a stagnation line (in three-dimensional flows) with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of ...