Search results
Results from the WOW.Com Content Network
Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2]) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.
Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss. From a certain perspective 'Return Loss' is a misnomer. The usual function of a transmission line is to convey ...
An SWR meter does not measure the actual impedance of a load (the resistance and reactance), but only the mismatch ratio. To measure the actual impedance requires an antenna analyzer or other similar RF measuring device. For accurate readings, the SWR meter itself must also match the line's impedance (typically 50 or 75 Ohms).
For example, the SWR bandwidth is typically determined by measuring the frequency range where the SWR is less than 2:1 . Another frequently used value for determining bandwidth for resonant antennas is the −3 dB return loss value, since loss due to SWR is −10·log 10 (2÷1) = −3.01000 dB.
The voltage standing wave ratio (VSWR) at a port, represented by the lower case 's', is a similar measure of port match to return loss but is a scalar linear quantity, the ratio of the standing wave maximum voltage to the standing wave minimum voltage.
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
Examples of estimated bandwidth of different antennas according to the schedule VSWR and return loss by the help of the ANSYS HFSS [1]. Ansys HFSS (high-frequency structure simulator) is a commercial finite element method solver for electromagnetic (EM) structures from Ansys.
The antenna gain, or power gain of an antenna is defined as the ratio of the intensity (power per unit surface area) radiated by the antenna in the direction of its maximum output, at an arbitrary distance, divided by the intensity radiated at the same distance by a hypothetical isotropic antenna which radiates equal power in all directions.