Search results
Results from the WOW.Com Content Network
Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2]) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.
where RL(dB) is the return loss in dB, P i is the incident power and P r is the reflected power. Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high.
The voltage standing wave ratio (VSWR) at a port, represented by the lower case 's', is a similar measure of port match to return loss but is a scalar linear quantity, the ratio of the standing wave maximum voltage to the standing wave minimum voltage.
A standing wave ratio meter, SWR meter, ISWR meter (current "I" SWR), or VSWR meter (voltage SWR) measures the standing wave ratio (SWR) in a transmission line. [ a ] The meter indirectly measures the degree of mismatch between a transmission line and its load (usually an antenna ).
For example, the SWR bandwidth is typically determined by measuring the frequency range where the SWR is less than 2:1 . Another frequently used value for determining bandwidth for resonant antennas is the −3 dB return loss value, since loss due to SWR is −10·log 10 (2÷1) = −3.01000 dB.
As the albedo of the Moon is very low (maximally 12% but usually closer to 7%), and the path loss over the 770,000 kilometre return distance is extreme (around 250 to 310 dB depending on VHF-UHF band used, modulation format and Doppler shift effects), high power (more than 100 watts) and high-gain antennas (more than 20 dB) must be used.
This is most important in antenna systems where mismatch loss in the transmitting and receiving antenna directly contributes to the losses the system—including the system noise figure. Other common RF system components such as filters , attenuators , splitters , and combiners will generate some amount of mismatch loss.
The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart), is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...