Search results
Results from the WOW.Com Content Network
A hypervisor, also known as a virtual machine monitor (VMM) or virtualizer, is a type of computer software, firmware or hardware that creates and runs virtual machines.A computer on which a hypervisor runs one or more virtual machines is called a host machine, and each virtual machine is called a guest machine.
Platform virtualization software, specifically emulators and hypervisors, are software packages that emulate the whole physical computer machine, often providing multiple virtual machines on one physical platform. The table below compares basic information about platform virtualization hypervisors.
A virtual machine implements functionality of a (physical) computer with an operating system. The software or firmware that creates a virtual machine on the host hardware is called a hypervisor or virtual machine monitor. [2] Software executed on these virtual machines is separated from the underlying hardware resources.
Nested virtualization becomes more necessary as widespread operating systems gain built-in hypervisor functionality, which in a virtualized environment can be used only if the surrounding hypervisor supports nested virtualization; for example, Windows 7 is capable of running Windows XP applications inside a built-in virtual machine.
A virtual machine (VM) can be more easily controlled and inspected from a remote site than a physical machine, and the configuration of a VM is more flexible. This is very useful in kernel development and for teaching operating system courses, including running legacy operating systems that do not support modern hardware. [8]
The VM hypervisor can simulate several types of console terminals for the guest operating system, such as the hardcopy line-mode 3215, the graphical 3270 family, and the integrated console on newer System/390 and System Z machines. Other users can then access running virtual machines using the DIAL command at the logon screen, which will ...
Operating-system-level virtualization usually imposes less overhead than full virtualization because programs in OS-level virtual partitions use the operating system's normal system call interface and do not need to be subjected to emulation or be run in an intermediate virtual machine, as is the case with full virtualization (such as VMware ...
This approach is described as full virtualization of the hardware, and can be implemented using a type 1 or type 2 hypervisor: a type 1 hypervisor runs directly on the hardware, and a type 2 hypervisor runs on another operating system, such as Linux or Windows. Each virtual machine can run any operating system supported by the underlying hardware.