Search results
Results from the WOW.Com Content Network
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol).
Variable pathlength absorption spectroscopy uses a determined slope to calculate concentration. As stated above this is a product of the molar absorptivity and the concentration. Since the actual absorbance value is taken at many data points at equal intervals, background subtraction is generally unnecessary.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Extinction coefficient refers to several different measures of the absorption of light in a medium: Attenuation coefficient, sometimes called "extinction coefficient" in meteorology or climatology Mass extinction coefficient, how strongly a substance absorbs light at a given wavelength, per mass density
"It is an intrinsic property of the species; the actual absorption of a sample is dependent on its thickness L and the concentration c of the species." No, absorbance is fine, because it is a way to quantify absorption, and because the phrase refers to the distinct nature of absorbance and molar absorptivity, two different concepts that are ...
For a pure RNA sample, the A 230:260:280 should be around 1:2:1, and for a pure DNA sample, the A 230:260:280 should be around 1:1.8:1. [9] Absorption at 330 nm and higher indicates particulates contaminating the solution, causing scattering of light in the visible range. The value in a pure nucleic acid sample should be zero. [citation needed]
The Beer–Lambert law can be applied to the analysis of a mixture by spectrophotometry, without the need for extensive pre-processing of the sample. An example is the determination of bilirubin in blood plasma samples. The spectrum of pure bilirubin is known, so the molar attenuation coefficient ε is known.
When an isosbestic plot is constructed by the superposition of the absorption spectra of two species (whether by using molar absorptivity for the representation, or by using absorbance and keeping the same molar concentration for both species), the isosbestic point corresponds to a wavelength at which these spectra cross each other.