Ads
related to: algebraic topology prerequisites worksheet answers printable
Search results
Results from the WOW.Com Content Network
In algebraic geometry and algebraic topology, branches of mathematics, A 1 homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group , denoted π 1 ( X ) , {\displaystyle \pi _{1}(X),} which records information about loops in a space .
An example in topology is the composition of paths, where the identity and association conditions hold only up to reparameterization, and hence up to homotopy, which is the 2-isomorphism for this 2-category. These n-isomorphisms must well behave between hom-sets and expressing this is the difficulty in the definition of weak n-categories.
In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.
Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]
It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s. The approach of Alexander Grothendieck is concerned with the category-theoretic properties that characterise the categories of finite G -sets for a fixed profinite group G .
An introduction to categorical approaches to algebraic topology: the focus is on the algebra, and assumes a topological background. Ronald Brown "Topology and Groupoids" pdf available Gives an account of some categorical methods in topology, use the fundamental groupoid on a set of base points to give a generalisation of the Seifert-van Kampen ...
Ads
related to: algebraic topology prerequisites worksheet answers printable