enow.com Web Search

  1. Ads

    related to: algebraic topology prerequisites worksheet answers 6th
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Guided Lessons

      Learn new concepts step-by-step

      with colorful guided lessons.

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group , denoted π 1 ( X ) , {\displaystyle \pi _{1}(X),} which records information about loops in a space .

  3. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  4. Higher category theory - Wikipedia

    en.wikipedia.org/wiki/Higher_category_theory

    An example in topology is the composition of paths, where the identity and association conditions hold only up to reparameterization, and hence up to homotopy, which is the 2-isomorphism for this 2-category. These n-isomorphisms must well behave between hom-sets and expressing this is the difficulty in the definition of weak n-categories.

  5. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.

  6. Specialization (pre)order - Wikipedia

    en.wikipedia.org/wiki/Specialization_(pre)order

    In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).

  7. Eilenberg–MacLane space - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–MacLane_space

    In mathematics, specifically algebraic topology, an Eilenberg–MacLane space [note 1] is a topological space with a single nontrivial homotopy group. Let G be a group and n a positive integer . A connected topological space X is called an Eilenberg–MacLane space of type K ( G , n ) {\displaystyle K(G,n)} , if it has n -th homotopy group π n ...

  8. Mayer–Vietoris sequence - Wikipedia

    en.wikipedia.org/wiki/Mayer–Vietoris_sequence

    Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]

  9. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    In mathematics, especially in algebraic topology, the homotopy limit and colimit [1] pg 52 are variants of the notions of limit and colimit extended to the homotopy category (). The main idea is this: if we have a diagram

  1. Ads

    related to: algebraic topology prerequisites worksheet answers 6th