Search results
Results from the WOW.Com Content Network
Fluorescent glucose biosensors are devices that measure the concentration of glucose in diabetic patients by means of sensitive protein that relays the concentration by means of fluorescence, an alternative to amperometric sension of glucose. Due to the prevalence of diabetes, it is the prime drive in the construction of fluorescent biosensors.
Diabetes mellitus type 1 is caused by insufficient or non-existent production of insulin, while type 2 is primarily due to a decreased response to insulin in the tissues of the body (insulin resistance). Both types of diabetes, if untreated, result in too much glucose remaining in the blood (hyperglycemia) and many
However, if large amounts of glucose are present (as in diabetes mellitus), hexokinase becomes saturated and the excess glucose enters the polyol pathway when aldose reductase reduces it to sorbitol. This reaction oxidizes NADPH to NADP+. Sorbitol dehydrogenase can then oxidize sorbitol to fructose, which produces NADH from NAD+.
Biosensors used for screening combinatorial DNA libraries. In a biosensor, the bioreceptor is designed to interact with the specific analyte of interest to produce an effect measurable by the transducer. High selectivity for the analyte among a matrix of other chemical or biological components is a key requirement of the bioreceptor.
Insulin resistance is a common feature of metabolic syndrome and type 2 diabetes. For this reason, gluconeogenesis is a target of therapy for type 2 diabetes, such as the antidiabetic drug metformin, which inhibits gluconeogenic glucose formation, and stimulates glucose uptake by cells. [35]
Hemodynamic stress overrides fatty acid inhibition of glucose metabolism. During this time there is a decrease in substrate supply and an increase in the substrate demand. This leads to an activation of AMP-activated protein kinase (AMPK) as the AMP concentration rises in intracellular fluids and the ATP concentration decreases.
The composition of dietary fat intake is linked to diabetes risk; decreasing consumption of saturated fats and trans fatty acids while replacing them with unsaturated fats may decrease the risk. [5] [8] Sugar sweetened drinks appear to increase the risk of type 2 diabetes both through their role in obesity and potentially through a direct effect.
Blood glucose monitoring is the use of a glucose meter for testing the concentration of glucose in the blood ().Particularly important in diabetes management, a blood glucose test is typically performed by piercing the skin (typically, via fingerstick) to draw blood, then applying the blood to a chemically active disposable 'test-strip'.