enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Epsilon calculus - Wikipedia

    en.wikipedia.org/wiki/Epsilon_calculus

    The epsilon operator and epsilon substitution method are typically applied to a first-order predicate calculus, followed by a demonstration of consistency. The epsilon-extended calculus is further extended and generalized to cover those mathematical objects, classes, and categories for which there is a desire to show consistency, building on ...

  3. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    a variation in the calculus of variations; the Kronecker delta function; the Feigenbaum constants; the force of interest in mathematical finance; the Dirac delta function; the receptor which enkephalins have the highest affinity for in pharmacology [1] the Skorokhod integral in Malliavin calculus, a subfield of stochastic analysis

  4. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ϵ, or less commonly the Latin lower case e. Index notation allows one to display permutations in a way compatible with tensor analysis: ε i 1 i 2 … i n {\displaystyle \varepsilon _{i_{1}i_{2}\dots i_{n}}} where each index i 1 , i 2 , ..., i n takes ...

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.

  6. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Although implicit in the development of calculus of the 17th and 18th centuries, the modern idea of the limit of a function goes back to Bolzano who, in 1817, introduced the basics of the epsilon-delta technique (see (ε, δ)-definition of limit below) to define continuous functions.

  7. Mathematical Alphanumeric Symbols - Wikipedia

    en.wikipedia.org/wiki/Mathematical_Alphanumeric...

    Mathematical Alphanumeric Symbols is a Unicode block comprising styled forms of Latin and Greek letters and decimal digits that enable mathematicians to denote different notions with different letter styles.

  8. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  9. Epsilon - Wikipedia

    en.wikipedia.org/wiki/Epsilon

    Epsilon (US: / ˈ ɛ p s ɪ l ɒ n /, [1] UK ... (In early calculus or nonstandard analysis) An infinitesimally small positive quantity is commonly denoted ε. (In ...